The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318966 Expansion of e.g.f. Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k))^(1/(i*j*k)). 1
 1, 1, 5, 21, 165, 1077, 11457, 103905, 1345257, 15834825, 237535389, 3372509709, 59235634125, 979573962429, 19224990899865, 366788042231193, 8019002662543953, 171360055378885905, 4132946756763614133, 97947895990285022085, 2576516749059849502581, 67124117357620005459141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: Product_{k>=1} 1/(1 - x^k)^(tau_3(k)/k), where tau_3 = A007425. E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} Sum_{j|d} tau(j) ) * x^k/k), where tau = number of divisors (A000005). MAPLE a:=series(mul(mul(mul(1/(1-x^(i*j*k))^(1/(i*j*k)), k=1..21), j=1..50), i=1..50), x=0, 22): seq(n!*coeff(a, x, n), n=0..21); # Paolo P. Lava, Apr 02 2019 MATHEMATICA nmax = 21; CoefficientList[Series[Product[Product[Product[1/(1 - x^(i j k))^(1/(i j k)), {i, 1, nmax}], {j, 1, nmax}], {k, 1, nmax} ], {x, 0, nmax}], x] Range[0, nmax]! nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(Sum[DivisorSigma[0, d], {d, Divisors[k]}]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = (n - 1)! Sum[Sum[Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] CROSSREFS Cf. A000005, A007425, A007426, A028342, A174465, A318413, A318695, A318967. Sequence in context: A221513 A284231 A182825 * A117067 A123334 A140196 Adjacent sequences:  A318963 A318964 A318965 * A318967 A318968 A318969 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Sep 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 23:05 EST 2020. Contains 331289 sequences. (Running on oeis4.)