login
A318948
Number of ways to choose an integer partition of each factor in a factorization of n.
9
1, 2, 3, 9, 7, 17, 15, 40, 39, 56, 56, 126, 101, 165, 197, 336, 297, 496, 490, 774, 837, 1114, 1255, 1948, 2007, 2638, 3127, 4123, 4565, 6201, 6842, 9131, 10311, 12904, 14988, 19516, 21637, 26995, 31488, 39250, 44583, 55418, 63261, 77683, 89935, 108068, 124754
OFFSET
1,2
FORMULA
Dirichlet g.f.: Product_{n > 1} 1 / (1 - P(n) / n^s) where P = A000041. [clarified by Ilya Gutkovskiy, Oct 26 2019]
EXAMPLE
The a(4) = 9 ways: (1+1)*(1+1), (1+1+1+1), (1+1)*(2), (2)*(1+1), (2+1+1), (2)*(2), (2+2), (3+1), (4).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#1, d]&)/@Select[facs[n/d], Min@@#1>=d&], {d, Rest[Divisors[n]]}]];
Table[Sum[Times@@PartitionsP/@fac, {fac, facs[n]}], {n, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 05 2018
STATUS
approved