login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318844 Expansion of Product_{k>=1} (1 + x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005). 1
1, 0, 1, 1, 2, 2, 5, 4, 8, 10, 15, 17, 29, 31, 48, 60, 81, 99, 143, 167, 231, 287, 374, 460, 615, 740, 964, 1194, 1512, 1856, 2379, 2877, 3635, 4460, 5540, 6759, 8433, 10192, 12608, 15335, 18774, 22726, 27868, 33525, 40863, 49292, 59652, 71694, 86780, 103818, 125118, 149778, 179608 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Convolution of A081362 and A107742.

Weigh transform of A032741.

LINKS

Table of n, a(n) for n=0..52.

N. J. A. Sloane, Transforms

FORMULA

G.f.: Product_{k>=1} (1 + x^k)^A032741(k).

G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/(k*(1 - x^(2*k)))), where sigma_1(k) = sum of divisors of k (A000203).

MAPLE

with(numtheory): a:=series(mul((1+x^k)^(tau(k)-1), k=1..100), x=0, 53): seq(coeff(a, x, n), n=0..52); # Paolo P. Lava, Apr 02 2019

MATHEMATICA

nmax = 52; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 52; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - 1) x^k/(k (1 - x^(2 k))), {k, 1, nmax}]], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[0, d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

CROSSREFS

Cf. A000005, A000203, A032741, A081362, A107742, A318783.

Sequence in context: A127683 A127686 A293548 * A034400 A021820 A222882

Adjacent sequences: A318841 A318842 A318843 * A318845 A318846 A318847

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Sep 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 01:13 EST 2022. Contains 358453 sequences. (Running on oeis4.)