OFFSET
1,1
COMMENTS
This polynomial (9*n^2 - 249*n + 1763) generates 40 distinct primes in succession from n = 1 to 40.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
FORMULA
From Chai Wah Wu, Feb 12 2019: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: x*(-1763*x^2 + 3268*x - 1523)/(x - 1)^3. (End)
a(n) = p(41 - 3*n), where p(n) = n^2 + n + 41 is Euler's prime generating polynomial - see A202018 and A005846. - Peter Bala, Jun 10 2021
MAPLE
seq(9*n^2-249*n+1763, n=1..50); # Muniru A Asiru, Dec 19 2018
MATHEMATICA
Array[9#^2 - 249# + 1763 &, 50] (* Amiram Eldar, Dec 15 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Arashdeep Singh, Dec 15 2018
STATUS
approved