login
a(0) = 1; for n > 0, a(n) = (prime(n)^2 - 1) * a(n-1).
1

%I #22 Sep 05 2018 09:26:57

%S 1,3,24,576,27648,3317760,557383680,160526499840,57789539942400,

%T 30512877089587200,25630816755253248000,24605584085043118080000,

%U 33660439028338985533440000,56549537567609495696179200000,104503545424942348046539161600000

%N a(0) = 1; for n > 0, a(n) = (prime(n)^2 - 1) * a(n-1).

%C The limit of A061742(n)/a(n) is zeta(2) (cf. A013661).

%H Seiichi Manyama, <a href="/A318766/b318766.txt">Table of n, a(n) for n = 0..195</a>

%F a(n) = A084920(n) * a(n-1) for n > 0.

%F a(n) = Product_{k=1..n} (prime(k)^2 - 1).

%t a[n_]:=Product[Prime[k]^2-1, {k, 1, n}]; Join[{1},Array[a, nmax]] (* _Stefano Spezia_, Sep 03 2018 *)

%o (PARI) {a(n) = prod(k=1, n, prime(k)^2-1)}

%Y Product_{k=1..n} (prime(k)^m - 1): A005867 (m=1), this sequence (m=2).

%Y Cf. A000040, A013661, A061742, A084920.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Sep 03 2018