login
A318766
a(0) = 1; for n > 0, a(n) = (prime(n)^2 - 1) * a(n-1).
1
1, 3, 24, 576, 27648, 3317760, 557383680, 160526499840, 57789539942400, 30512877089587200, 25630816755253248000, 24605584085043118080000, 33660439028338985533440000, 56549537567609495696179200000, 104503545424942348046539161600000
OFFSET
0,2
COMMENTS
The limit of A061742(n)/a(n) is zeta(2) (cf. A013661).
LINKS
FORMULA
a(n) = A084920(n) * a(n-1) for n > 0.
a(n) = Product_{k=1..n} (prime(k)^2 - 1).
MATHEMATICA
a[n_]:=Product[Prime[k]^2-1, {k, 1, n}]; Join[{1}, Array[a, nmax]] (* Stefano Spezia, Sep 03 2018 *)
PROG
(PARI) {a(n) = prod(k=1, n, prime(k)^2-1)}
CROSSREFS
Product_{k=1..n} (prime(k)^m - 1): A005867 (m=1), this sequence (m=2).
Sequence in context: A166736 A330297 A109055 * A292813 A293249 A202944
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 03 2018
STATUS
approved