login
A318744
a(n) = Sum_{k=1..n} floor(n/k)^5.
7
1, 33, 245, 1058, 3160, 8054, 17086, 33860, 60353, 103437, 164489, 257945, 380407, 556001, 779865, 1085840, 1457122, 1958008, 2544540, 3312306, 4205650, 5336264, 6618976, 8254674, 10059777, 12298021, 14792045, 17829881, 21130663, 25189011, 29518163, 34749419
OFFSET
1,2
LINKS
FORMULA
a(n) = A006218(n) - 5*A024916(n) + 10*A064602(n) - 10*A064603(n) + 5*A064604(n).
a(n) ~ zeta(5) * n^5.
MATHEMATICA
Table[Sum[Floor[n/k]^5, {k, 1, n}], {n, 1, 40}]
Accumulate[Table[DivisorSigma[0, k] - 5*DivisorSigma[1, k] + 10*DivisorSigma[2, k] - 10*DivisorSigma[3, k] + 5*DivisorSigma[4, k], {k, 1, 40}]]
PROG
(PARI) a(n) = sum(k=1, n, (n\k)^5); \\ Michel Marcus, Sep 03 2018
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, May 27 2021
(Python)
from math import isqrt
def A318744(n): return -(s:=isqrt(n))**6+sum((q:=n//k)*(k**5-(k-1)**5+q**4) for k in range(1, s+1)) # Chai Wah Wu, Oct 26 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 02 2018
STATUS
approved