OFFSET
1,2
COMMENTS
Dirichlet convolution of a(n)/A299150(n) with itself gives A064549 [= n * Product_{primes p|n} p)], like gives also the self-convolution of A318511(n)/A318512(n), as it is the same ratio reduced to its lowest terms. However, in contrast to A318511, this sequence is multiplicative as both A000027 and A318653 are multiplicative sequences (also, because A064549 and A299150 are both multiplicative).
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
MATHEMATICA
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := n * Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
PROG
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Sep 02 2018
STATUS
approved