login
A318669
Numerators of the sequence whose Dirichlet convolution with itself yields A065769 ("Prime cascade").
2
1, 1, 1, 7, 3, 1, 5, 25, 5, 3, 7, 7, 11, 5, 3, 363, 13, 5, 17, 21, 5, 7, 19, 25, 51, 11, 13, 35, 23, 3, 29, 1335, 7, 13, 15, 35, 31, 17, 11, 75, 37, 5, 41, 49, 15, 19, 43, 363, 115, 51, 13, 77, 47, 13, 21, 125, 17, 23, 53, 21, 59, 29, 25, 9923, 33, 7, 61, 91, 19, 15, 67, 125, 71, 31, 51, 119, 35, 11, 73, 1089, 139, 37, 79, 35, 39, 41, 23
OFFSET
1,4
COMMENTS
Multiplicative because A065769 and A317932 are.
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A065769(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
up_to = 1+(2^16);
A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0, f[i, 2]-1)); factorback(f); };
A065769(n) = { my(f=factor(n>>valuation(n, 2))[, 1]~); (A003557(n) * factorback(vector(#f, i, precprime(f[i]-1)))); }; \\ Antti Karttunen, Sep 03 2018
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318669_aux = DirSqrt(vector(up_to, n, A065769(n)));
A318669(n) = numerator(v318669_aux[n]);
CROSSREFS
Cf. A065769, A317932 (denominators).
Sequence in context: A124603 A199722 A178149 * A110636 A125681 A021899
KEYWORD
nonn,frac,mult
AUTHOR
Antti Karttunen, Sep 03 2018
STATUS
approved