login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318662 Denominators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n. 5
1, 1, 2, 1, 2, 2, 2, 2, 8, 2, 2, 2, 2, 2, 4, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 16, 2, 2, 4, 2, 2, 4, 2, 4, 8, 2, 2, 4, 4, 2, 4, 2, 2, 16, 2, 2, 4, 8, 8, 4, 2, 2, 16, 4, 4, 4, 2, 2, 4, 2, 2, 16, 8, 4, 4, 2, 2, 4, 4, 2, 16, 2, 2, 16, 2, 4, 4, 2, 4, 128, 2, 2, 4, 4, 2, 4, 4, 2, 16, 4, 2, 4, 2, 4, 4, 2, 8, 16, 8, 2, 4, 2, 4, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

FORMULA

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.

PROG

(PARI)

up_to = 1+(2^16);

A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653

DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};

v318661_62 = DirSqrt(vector(up_to, n, A055653(n)));

A318661(n) = numerator(v318661_62[n]);

A318662(n) = denominator(v318661_62[n]);

A318663(n) = valuation(A318662(n), 2);

CROSSREFS

Cf. A055653, A318661 (numerators), A318663.

Cf. also A046644, A299150, A317932, A317934, A318314.

Sequence in context: A029252 A094876 A144159 * A073610 A285797 A131840

Adjacent sequences:  A318659 A318660 A318661 * A318663 A318664 A318665

KEYWORD

nonn

AUTHOR

Antti Karttunen, Sep 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 19:08 EST 2019. Contains 319350 sequences. (Running on oeis4.)