login
A318661
Numerators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.
3
1, 1, 3, 1, 5, 3, 7, 3, 19, 5, 11, 3, 13, 7, 15, 5, 17, 19, 19, 5, 21, 11, 23, 9, 59, 13, 95, 7, 29, 15, 31, 9, 33, 17, 35, 19, 37, 19, 39, 15, 41, 21, 43, 11, 95, 23, 47, 15, 123, 59, 51, 13, 53, 95, 55, 21, 57, 29, 59, 15, 61, 31, 133, 67, 65, 33, 67, 17, 69, 35, 71, 57, 73, 37, 177, 19, 77, 39, 79, 25, 2019, 41, 83, 21, 85, 43, 87, 33, 89
OFFSET
1,3
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
up_to = 1+(2^16);
A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318661_62 = DirSqrt(vector(up_to, n, A055653(n)));
A318661(n) = numerator(v318661_62[n]);
A318662(n) = denominator(v318661_62[n]);
A318663(n) = valuation(A318662(n), 2);
CROSSREFS
Cf. A055653, A318662 (denominators).
Sequence in context: A136655 A376427 A060819 * A089654 A233526 A344674
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 03 2018
STATUS
approved