login
a(0) = a(1) = 1; for n > 1, a(n) = Sum_{k=0..n-2} a(k) AND a(n-k-2).
1

%I #11 Feb 16 2025 08:33:56

%S 1,1,1,2,3,2,3,2,6,6,9,8,14,14,17,12,14,14,22,20,16,12,35,52,50,54,62,

%T 76,76,84,107,80,78,86,118,116,124,60,114,176,216,168,166,160,224,276,

%U 265,288,262,374,412,424,336,344,394,392,468,464,622,740,892,960,1121

%N a(0) = a(1) = 1; for n > 1, a(n) = Sum_{k=0..n-2} a(k) AND a(n-k-2).

%H Alois P. Heinz, <a href="/A318620/b318620.txt">Table of n, a(n) for n = 0..10000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AND.html">AND</a>

%p a:= proc(n) option remember; `if`(n<2, 1,

%p add(Bits[And](a(k), a(n-k-2)), k=0..n-2))

%p end:

%p seq(a(n), n=0..80); # _Alois P. Heinz_, Aug 30 2018

%t a[0] = a[1] = 1; a[n_] := a[n] = Sum[BitAnd[a[k], a[n - k - 2]], {k, 0, n - 2}]; Table[a[n], {n, 0, 62}]

%Y Cf. A007461.

%K nonn,changed

%O 0,4

%A _Ilya Gutkovskiy_, Aug 30 2018