

A318607


Triangle read by rows: T(n,k) is the number of sets of rooted hypertrees on a total of n unlabeled nodes with a total of k edges, (0 <= k < n).


2



1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 9, 1, 5, 20, 42, 46, 20, 1, 6, 30, 86, 145, 128, 48, 1, 7, 42, 153, 353, 483, 364, 115, 1, 8, 56, 248, 729, 1369, 1592, 1029, 286, 1, 9, 72, 376, 1345, 3236, 5150, 5151, 2930, 719, 1, 10, 90, 541, 2287, 6728, 13708, 18792, 16513, 8344, 1842
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Equivalently, the number of sets of rooted connected graphs on a total of n unlabeled nodes with a total of k blocks where every block is a complete graph.
Bivariate Euler transform of triangle A318602.


LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275


EXAMPLE

Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 6, 4;
1, 4, 12, 16, 9;
1, 5, 20, 42, 46, 20;
1, 6, 30, 86, 145, 128, 48;
1, 7, 42, 153, 353, 483, 364, 115;
1, 8, 56, 248, 729, 1369, 1592, 1029, 286;
...
Case n=3: There are 5 sets of rooted graph which are illustrated below (an x marks a root node). These have 0, 1, 1, 2, 2 blocks so row 3 is 1, 2, 2.
x o o o o
/ / \ \ /
x x x x xo xo xo


PROG

(PARI) \\ here EulerMT is Euler transform (bivariate version).
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v>v^i, vars))/i ))1)}
A(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerMT(y*EulerMT(v)))); [Vecrev(p)  p < EulerMT(v)]}
{ my(T=A(10)); for(n=1, #T, print(T[n])) }


CROSSREFS

Rightmost diagonal is A000081 (rooted trees).
Row sums are A035052.
Cf. A318601, A318602.
Sequence in context: A046726 A082137 A091187 * A259824 A065173 A098474
Adjacent sequences: A318604 A318605 A318606 * A318608 A318609 A318610


KEYWORD

nonn,tabl


AUTHOR

Andrew Howroyd, Aug 30 2018


STATUS

approved



