login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318602 Triangle read by rows: T(n,k) is the number of rooted hypertrees on n unlabeled nodes with k edges, (0 <= k < n). 3
1, 0, 1, 0, 1, 2, 0, 1, 3, 4, 0, 1, 5, 10, 9, 0, 1, 6, 20, 30, 20, 0, 1, 8, 33, 77, 91, 48, 0, 1, 9, 49, 152, 277, 268, 115, 0, 1, 11, 68, 269, 655, 969, 790, 286, 0, 1, 12, 91, 428, 1330, 2651, 3294, 2308, 719, 0, 1, 14, 116, 647, 2420, 6137, 10300, 10993, 6737, 1842 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Equivalently, the number of rooted connected graphs on n unlabeled nodes with k blocks where every block is a complete graph.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275

EXAMPLE

Triangle begins:

  1;

  0, 1;

  0, 1,  2;

  0, 1,  3,  4;

  0, 1,  5, 10,   9;

  0, 1,  6, 20,  30,  20;

  0, 1,  8, 33,  77,  91,  48;

  0, 1,  9, 49, 152, 277, 268, 115;

  0, 1, 11, 68, 269, 655, 969, 790, 286;

  ...

PROG

(PARI)

EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}

R(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerMT(y*EulerMT(v)))); [Vecrev(p) | p <- v]}

{ my(T=R(10)); for(n=1, #T, print(T[n])) }

CROSSREFS

Rightmost diagonal is A000081 (rooted trees).

Row sums are A007563.

Cf. A318601.

Sequence in context: A286011 A241954 A049600 * A004542 A207331 A134405

Adjacent sequences:  A318599 A318600 A318601 * A318604 A318605 A318606

KEYWORD

nonn,tabl

AUTHOR

Andrew Howroyd, Aug 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 22:57 EST 2018. Contains 318081 sequences. (Running on oeis4.)