login
A318573
Numerator of the reciprocal sum of the integer partition with Heinz number n.
4
0, 1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 1, 5, 5, 4, 1, 2, 1, 7, 3, 6, 1, 7, 2, 7, 3, 9, 1, 11, 1, 5, 7, 8, 7, 3, 1, 9, 2, 10, 1, 7, 1, 11, 4, 10, 1, 9, 1, 5, 9, 13, 1, 5, 8, 13, 5, 11, 1, 17, 1, 12, 5, 6, 1, 17, 1, 15, 11, 19, 1, 4, 1, 13, 7, 17, 9, 5, 1, 13, 2, 14, 1, 11, 10, 15, 3, 16, 1, 7, 5, 19, 13, 16, 11, 11, 1, 3
OFFSET
1,4
COMMENTS
The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the numerator of Sum y_i/x_i.
MATHEMATICA
Table[Sum[pr[[2]]/PrimePi[pr[[1]]], {pr, If[n==1, {}, FactorInteger[n]]}], {n, 100}]//Numerator
PROG
(PARI) A318573(n) = { my(f=factor(n)); numerator(sum(i=1, #f~, f[i, 2]/primepi(f[i, 1]))); }; \\ Antti Karttunen, Nov 17 2019
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Gus Wiseman, Aug 29 2018
EXTENSIONS
More terms from Antti Karttunen, Nov 17 2019
STATUS
approved