login
Number of multiset partitions of multiset partitions of normal multisets of size n.
16

%I #8 Jan 01 2021 14:22:04

%S 1,6,36,274,2408,24440,279172,3542798,49354816,747851112,12231881948,

%T 214593346534,4016624367288,79843503990710,1678916979373760,

%U 37215518578700028,866953456654946948,21167221410812128266,540346299720320080828,14390314687100383124540,399023209689817997883900

%N Number of multiset partitions of multiset partitions of normal multisets of size n.

%C A multiset is normal if it spans an initial interval of positive integers.

%e The a(2) = 6 multiset partitions of multiset partitions:

%e {{{1,1}}}

%e {{{1,2}}}

%e {{{1},{1}}}

%e {{{1},{2}}}

%e {{{1}},{{1}}}

%e {{{1}},{{2}}}

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];

%t Table[Sum[Length[mps[m]],{m,Join@@mps/@allnorm[n]}],{n,6}]

%o (PARI) \\ See links in A339645 for combinatorial species functions.

%o seq(n)={my(A=symGroupSeries(n)); NormalLabelingsSeq(sExp(sExp(A))-1)} \\ _Andrew Howroyd_, Jan 01 2021

%Y Cf. A001970, A007716, A050336, A255906, A269134, A317533, A317791, A318566.

%K nonn

%O 1,2

%A _Gus Wiseman_, Aug 29 2018

%E Terms a(8) and beyond from _Andrew Howroyd_, Jan 01 2021