login
A318559
Number of combinatory separations of the multiset of prime factors of n.
9
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 3, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 3, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 8, 1, 2, 4, 11, 2, 3, 1, 4, 2, 3, 1, 15, 1, 2, 4, 4, 2, 3, 1, 12, 5, 2, 1, 8, 2, 2
OFFSET
1,4
COMMENTS
A multiset is normal if it spans an initial interval of positive integers. The type of a multiset is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223. A (headless) combinatory separation of a multiset m is a multiset of normal multisets {t_1,...,t_k} such that there exist multisets {s_1,...,s_k} with multiset union m and such that s_i has type t_i for each i = 1...k.
EXAMPLE
The a(60) = 8 combinatory separations of {2,2,3,5}:
{1123},
{1,112}, {1,123}, {11,12}, {12,12},
{1,1,11}, {1,1,12},
{1,1,1,1}.
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normize[m_]:=m/.Rule@@@Table[{Union[m][[i]], i}, {i, Length[Union[m]]}];
Table[Length[Union[Sort/@Map[normize, mps[primeMS[n]], {2}]]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 28 2018
STATUS
approved