
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 10, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 7, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 20, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 14, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 20, 10, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 14, 2, 6, 6, 9, 2, 8, 2, 10, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537
Index entries for sequences computed from exponents in factorization of n


FORMULA

For all n >= 1, A001222(a(n)) = A318464(n).


PROG

(PARI)
A003714(n) = { my(s=0, w); while(n>2, w = A072649(n); s += 2^(w1); n = fibonacci(w+1)); (s+n); }
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m2); }; \\ From A072649
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
A318469(n) = factorback(apply(e > A019565(A003714(e)), factor(n)[, 2]));


CROSSREFS

Cf. A003714, A019565, A072649, A318464, A318465.
Cf. also A293442, A293443, A300834, A318470.
Sequence in context: A319357 A237433 A236515 * A300224 A304103 A305983
Adjacent sequences: A318466 A318467 A318468 * A318470 A318471 A318472


KEYWORD

nonn,mult


AUTHOR

Antti Karttunen, Aug 30 2018


STATUS

approved

