login
A318400
Numbers whose prime indices are all powers of 2 (including 1).
14
1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 19, 21, 24, 27, 28, 32, 36, 38, 42, 48, 49, 53, 54, 56, 57, 63, 64, 72, 76, 81, 84, 96, 98, 106, 108, 112, 114, 126, 128, 131, 133, 144, 147, 152, 159, 162, 168, 171, 189, 192, 196, 212, 216, 224, 228, 243, 252, 256, 262
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = 1/Product_{k>=0} (1 - 1/prime(2^k)) = 3.81625872357742992578... . - Amiram Eldar, Dec 03 2022
EXAMPLE
The sequence of all integer partitions whose parts are all powers of 2 (including 1) begins: (), (1), (2), (11), (21), (4), (111), (22), (211), (41), (1111), (221), (8), (42), (2111), (222), (411), (11111), (2211), (81), (421), (21111), (44).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
pow2Q[n_]:=Or[n==1, MatchQ[FactorInteger[n], {{2, _}}]];
Select[Range[100], And@@pow2Q/@primeMS[#]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 16 2018
STATUS
approved