login
A318384
The 10-adic integer a_5 = ...3747888971752538625 satisfying a_5^9 + 1 = a_6, a_6^9 + 1 = a_7, ... , a_3^9 + 1 = a_4 and a_4^9 + 1 = a_5.
10
5, 2, 6, 8, 3, 5, 2, 5, 7, 1, 7, 9, 8, 8, 8, 7, 4, 7, 3, 9, 1, 8, 8, 5, 8, 4, 3, 5, 8, 8, 6, 9, 7, 5, 8, 0, 6, 5, 4, 6, 4, 7, 7, 3, 1, 7, 4, 5, 7, 5, 3, 0, 0, 1, 0, 8, 1, 6, 9, 5, 2, 7, 9, 4, 0, 7, 8, 3, 6, 1, 3, 4, 0, 0, 6, 5, 1, 9, 6, 0, 3, 4, 0, 0, 8, 5, 9, 9, 6, 0, 4
OFFSET
0,1
LINKS
EXAMPLE
3747888971752538625^9 + 1 == 1601963043212890626 (mod 10^19),
1601963043212890626^9 + 1 == 5448818206787109377 (mod 10^19),
5448818206787109377^9 + 1 == 6396884918212891138 (mod 10^19),
6396884918212891138^9 + 1 == 5099734869332853249 (mod 10^19),
5099734869332853249^9 + 1 == 7644773889965429250 (mod 10^19),
7644773889965429250^9 + 1 == 7705078125000000001 (mod 10^19),
7705078125000000001^9 + 1 == 9345703125000000002 (mod 10^19),
9345703125000000002^9 + 1 == 2500000000000000513 (mod 10^19),
2500000000000000513^9 + 1 == 8996619787545743874 (mod 10^19),
8996619787545743874^9 + 1 == 3747888971752538625 (mod 10^19).
CROSSREFS
Cf. A318379 (a_0), A318380 (a_1), A318381 (a_2), A318382 (a_3), A318383 (a_4), this sequence (a_5), A318385 (a_6), A318386 (a_7), A318409 (a_8), A318410 (a_9).
Sequence in context: A035568 A344964 A321074 * A091660 A307029 A292580
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 25 2018
STATUS
approved