login
A318383
The 10-adic integer a_4 = ...8996619787545743874 satisfying a_4^9 + 1 = a_5, a_5^9 + 1 = a_6, ... , a_2^9 + 1 = a_3 and a_3^9 + 1 = a_4.
10
4, 7, 8, 3, 4, 7, 5, 4, 5, 7, 8, 7, 9, 1, 6, 6, 9, 9, 8, 9, 9, 5, 0, 9, 8, 0, 6, 8, 4, 9, 0, 4, 5, 5, 7, 1, 3, 0, 9, 1, 7, 2, 2, 0, 0, 1, 6, 2, 2, 2, 6, 1, 2, 2, 3, 9, 9, 2, 5, 9, 2, 9, 1, 1, 6, 0, 8, 1, 0, 4, 2, 8, 0, 8, 4, 0, 9, 4, 3, 4, 4, 2, 3, 0, 6, 9, 0, 5, 0, 4, 6
OFFSET
0,1
LINKS
EXAMPLE
8996619787545743874^9 + 1 == 3747888971752538625 (mod 10^19),
3747888971752538625^9 + 1 == 1601963043212890626 (mod 10^19),
1601963043212890626^9 + 1 == 5448818206787109377 (mod 10^19),
5448818206787109377^9 + 1 == 6396884918212891138 (mod 10^19),
6396884918212891138^9 + 1 == 5099734869332853249 (mod 10^19),
5099734869332853249^9 + 1 == 7644773889965429250 (mod 10^19),
7644773889965429250^9 + 1 == 7705078125000000001 (mod 10^19),
7705078125000000001^9 + 1 == 9345703125000000002 (mod 10^19),
9345703125000000002^9 + 1 == 2500000000000000513 (mod 10^19),
2500000000000000513^9 + 1 == 8996619787545743874 (mod 10^19).
CROSSREFS
Cf. A318379 (a_0), A318380 (a_1), A318381 (a_2), A318382 (a_3), this sequence (a_4), A318384 (a_5), A318385 (a_6), A318386 (a_7), A318409 (a_8), A318410 (a_9).
Sequence in context: A151968 A115632 A190260 * A151958 A176778 A021213
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 25 2018
STATUS
approved