login
A318382
The 10-adic integer a_3 = ...2500000000000000513 satisfying a_3^9 + 1 = a_4, a_4^9 + 1 = a_5, ... , a_1^9 + 1 = a_2 and a_2^9 + 1 = a_3.
10
3, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 2, 1, 8, 2, 8, 3, 7, 6, 0, 2, 1, 3, 7, 5, 0, 5, 8, 7, 7, 9, 8, 6, 9, 1, 1, 9, 4, 4, 8, 1, 8, 6, 1, 6, 3, 7, 1, 9, 4, 2, 4, 1, 7, 5, 3, 2, 4, 4, 3, 8, 1, 9, 0, 6, 4, 0, 2, 4, 2, 2, 6, 2, 3, 6, 4, 7, 1, 2, 4, 4, 0, 8, 6
OFFSET
0,1
LINKS
EXAMPLE
2500000000000000513^9 + 1 == 8996619787545743874 (mod 10^19),
8996619787545743874^9 + 1 == 3747888971752538625 (mod 10^19),
3747888971752538625^9 + 1 == 1601963043212890626 (mod 10^19),
1601963043212890626^9 + 1 == 5448818206787109377 (mod 10^19),
5448818206787109377^9 + 1 == 6396884918212891138 (mod 10^19),
6396884918212891138^9 + 1 == 5099734869332853249 (mod 10^19),
5099734869332853249^9 + 1 == 7644773889965429250 (mod 10^19),
7644773889965429250^9 + 1 == 7705078125000000001 (mod 10^19),
7705078125000000001^9 + 1 == 9345703125000000002 (mod 10^19),
9345703125000000002^9 + 1 == 2500000000000000513 (mod 10^19).
CROSSREFS
Cf. A318379 (a_0), A318380 (a_1), A318381 (a_2), this sequence (a_3), A318383 (a_4), A318384 (a_5), A318385 (a_6), A318386 (a_7), A318409 (a_8), A318410 (a_9).
Sequence in context: A375299 A362270 A125846 * A340190 A143677 A249150
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 25 2018
STATUS
approved