login
The 10-adic integer a_2 = ...9345703125000000002 satisfying a_2^9 + 1 = a_3, a_3^9 + 1 = a_4, ... , a_0^9 + 1 = a_1 and a_1^9 + 1 = a_2.
10

%I #18 Aug 26 2018 09:48:50

%S 2,0,0,0,0,0,0,0,0,5,2,1,3,0,7,5,4,3,9,2,3,1,3,8,8,8,1,8,3,3,5,2,4,5,

%T 7,2,7,0,7,0,7,7,2,1,9,3,1,0,0,7,5,9,8,1,2,8,3,4,1,7,4,1,0,9,4,7,7,7,

%U 7,4,2,8,1,2,7,8,5,2,4,3,0,9,3,1,8,8,2,3,2,2,7

%N The 10-adic integer a_2 = ...9345703125000000002 satisfying a_2^9 + 1 = a_3, a_3^9 + 1 = a_4, ... , a_0^9 + 1 = a_1 and a_1^9 + 1 = a_2.

%H Seiichi Manyama, <a href="/A318381/b318381.txt">Table of n, a(n) for n = 0..5000</a>

%e 9345703125000000002^9 + 1 == 2500000000000000513 (mod 10^19),

%e 2500000000000000513^9 + 1 == 8996619787545743874 (mod 10^19),

%e 8996619787545743874^9 + 1 == 3747888971752538625 (mod 10^19),

%e 3747888971752538625^9 + 1 == 1601963043212890626 (mod 10^19),

%e 1601963043212890626^9 + 1 == 5448818206787109377 (mod 10^19),

%e 5448818206787109377^9 + 1 == 6396884918212891138 (mod 10^19),

%e 6396884918212891138^9 + 1 == 5099734869332853249 (mod 10^19),

%e 5099734869332853249^9 + 1 == 7644773889965429250 (mod 10^19),

%e 7644773889965429250^9 + 1 == 7705078125000000001 (mod 10^19),

%e 7705078125000000001^9 + 1 == 9345703125000000002 (mod 10^19).

%Y Cf. A318379 (a_0), A318380 (a_1), this sequence (a_2), A318382 (a_3), A318383 (a_4), A318384 (a_5), A318385 (a_6), A318386 (a_7), A318409 (a_8), A318410 (a_9).

%K nonn,base

%O 0,1

%A _Seiichi Manyama_, Aug 25 2018