login
A318374
The 10-adic integer d = ...8865812009 satisfying d^3 + 1 = a, a^3 + 1 = b, b^3 + 1 = c and c^3 + 1 = d.
6
9, 0, 0, 2, 1, 8, 5, 6, 8, 8, 0, 4, 4, 0, 1, 5, 9, 6, 0, 2, 9, 7, 7, 1, 5, 8, 3, 3, 1, 9, 0, 7, 9, 7, 2, 5, 2, 6, 1, 5, 0, 3, 3, 2, 1, 2, 0, 9, 5, 2, 1, 3, 7, 2, 2, 5, 8, 9, 8, 5, 4, 6, 1, 7, 6, 2, 9, 7, 4, 0, 2, 7, 9, 0, 9, 6, 4, 1, 4, 3, 9, 2, 6, 9, 9, 8, 6, 0, 8, 6, 3
OFFSET
0,1
LINKS
EXAMPLE
8865812009^3 + 1 == 4680316730 (mod 10^10),
4680316730^3 + 1 == 2218217001 (mod 10^10),
2218217001^3 + 1 == 6921651002 (mod 10^10),
6921651002^3 + 1 == 8865812009 (mod 10^10).
CROSSREFS
Cf. A318352 (a), A318353 (b), A318373 (c), this sequence (d).
Another automorphic cube-ring of four 10-adic integers: A317698, A318299, A318300, A318302.
Sequence in context: A019313 A276999 A223082 * A259107 A097671 A112628
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 24 2018
STATUS
approved