login
A318373
The 10-adic integer c = ...6921651002 satisfying c^3 + 1 = d, d^3 + 1 = a, a^3 + 1 = b and b^3 + 1 = c.
6
2, 0, 0, 1, 5, 6, 1, 2, 9, 6, 9, 2, 4, 5, 2, 7, 8, 7, 0, 8, 6, 1, 6, 6, 7, 2, 0, 0, 9, 2, 4, 5, 8, 0, 0, 6, 5, 1, 1, 2, 4, 8, 3, 9, 0, 0, 4, 8, 7, 5, 1, 4, 6, 4, 1, 4, 5, 5, 2, 8, 2, 1, 6, 7, 3, 3, 4, 7, 9, 4, 3, 8, 5, 9, 3, 6, 1, 0, 8, 3, 9, 5, 0, 7, 2, 7, 5, 0, 2, 8, 7
OFFSET
0,1
LINKS
EXAMPLE
6921651002^3 + 1 == 8865812009 (mod 10^10),
8865812009^3 + 1 == 4680316730 (mod 10^10),
4680316730^3 + 1 == 2218217001 (mod 10^10),
2218217001^3 + 1 == 6921651002 (mod 10^10).
CROSSREFS
Cf. A318352 (a), A318353 (b), this sequence (c), A318374 (d).
Another automorphic cube-ring of four 10-adic integers: A317698, A318299, A318300, A318302.
Sequence in context: A122890 A309524 A331106 * A138497 A295858 A113129
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 24 2018
STATUS
approved