login
A318366
a(n) = Sum_{d|n} bigomega(d)*bigomega(n/d).
5
0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 8, 0, 2, 2, 10, 0, 8, 0, 8, 2, 2, 0, 20, 1, 2, 4, 8, 0, 12, 0, 20, 2, 2, 2, 24, 0, 2, 2, 20, 0, 12, 0, 8, 8, 2, 0, 40, 1, 8, 2, 8, 0, 20, 2, 20, 2, 2, 0, 34, 0, 2, 8, 35, 2, 12, 0, 8, 2, 12, 0, 52, 0, 2, 8, 8, 2, 12, 0, 40, 10, 2, 0, 34, 2, 2, 2, 20, 0, 34, 2, 8, 2, 2, 2
OFFSET
1,6
COMMENTS
Dirichlet convolution of A001222 with itself.
FORMULA
a(A025487(n)) = A322375(n). - David A. Corneth, Jan 12 2019
From Robert Israel, Jan 17 2019: (Start)
If x and y are coprime, a(x*y) = a(x)*A000005(y) + A000005(x)*a(y) + A000005(x*y)*A001222(x)*A001222(y).
If p is prime, a(p^k) = (k^3-k)/6 = A000292(k-1). (End)
EXAMPLE
24 has 8 divisors, namely 1, 2, 3, 4, 6, 8, 12, 24, and four prime factors counted with multiplicity. The divisors have 0, 1, 1, 2, 2, 3, 3, 4 divisors respectively. So a(24) = 0 * (4 - 0) + 1 * (4 - 1) + 1 * (4 - 1) + 2 * (4 - 2) + 2 * (4 - 2) + 3 * (4 - 3) + 4 * (4 - 4) = 0 + 3 + 3 + 4 + 4 + 3 + 3 + 0 = 20. - David A. Corneth, Jan 12 2019
MAPLE
f:= proc(n) local F, G, t, x;
F:= map(t -> t[2], ifactors(n)[2]);
G:= unapply(normal(mul((1-x^(t+1))/(1-x), t = F)), x);
(convert(F, `+`)-1)*D(G)(1) - (D@@2)(G)(1);
end proc:
map(f, [$1..100]); # Robert Israel, Jan 17 2019
MATHEMATICA
Table[Sum[PrimeOmega[d] PrimeOmega[n/d], {d, Divisors[n]}], {n, 95}]
PROG
(PARI) a(n) = sumdiv(n, d, bigomega(d)*bigomega(n/d)); \\ Michel Marcus, Aug 25 2018
(PARI) a(n) = bn = bigomega(n); sumdiv(n, d, bd = bigomega(d); bd * (bn - bd)) \\ David A. Corneth, Jan 12 2019
CROSSREFS
Cf. A000005, A001222, A008578 (positions of 0's), A069264, A070288, A112967, A317938, A322375.
Sequence in context: A154794 A177264 A326758 * A300252 A305796 A347961
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 24 2018
STATUS
approved