login
A318353
The 10-adic integer b = ...2218217001 satisfying b^3 + 1 = c, c^3 + 1 = d, d^3 + 1 = a and a^3 + 1 = b.
6
1, 0, 0, 7, 1, 2, 8, 1, 2, 2, 0, 0, 0, 9, 7, 3, 9, 9, 1, 8, 7, 9, 8, 0, 6, 3, 9, 9, 1, 5, 2, 2, 0, 6, 8, 4, 7, 7, 3, 4, 1, 5, 8, 9, 8, 0, 8, 8, 0, 8, 5, 4, 3, 5, 6, 7, 7, 6, 7, 9, 4, 5, 6, 1, 9, 6, 1, 7, 0, 8, 9, 9, 7, 0, 7, 6, 3, 1, 2, 4, 8, 1, 1, 5, 1, 2, 0, 3, 3, 8, 3
OFFSET
0,4
LINKS
EXAMPLE
2218217001^3 + 1 == 6921651002 (mod 10^10),
6921651002^3 + 1 == 8865812009 (mod 10^10),
8865812009^3 + 1 == 4680316730 (mod 10^10),
4680316730^3 + 1 == 2218217001 (mod 10^10).
CROSSREFS
Cf. A318352 (a), this sequence (b), A318373 (c), A318374 (d).
Another automorphic cube-ring of four 10-adic integers: A317698, A318299, A318300, A318302.
Sequence in context: A215670 A010144 A195409 * A354639 A273984 A119506
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 24 2018
STATUS
approved