login
A318352
The 10-adic integer a = ...4680316730 satisfying a^3 + 1 = b, b^3 + 1 = c, c^3 + 1 = d and d^3 + 1 = a.
6
0, 3, 7, 6, 1, 3, 0, 8, 6, 4, 0, 0, 4, 4, 4, 1, 0, 6, 0, 3, 7, 4, 7, 0, 1, 5, 2, 3, 5, 9, 4, 1, 5, 2, 8, 3, 6, 5, 5, 9, 7, 6, 0, 4, 2, 9, 8, 5, 5, 8, 5, 8, 5, 4, 3, 5, 8, 0, 9, 6, 5, 6, 7, 9, 5, 2, 9, 5, 2, 3, 7, 3, 0, 8, 1, 4, 9, 2, 2, 2, 6, 6, 2, 8, 8, 8, 9, 9, 3, 3, 8
OFFSET
0,2
LINKS
EXAMPLE
4680316730^3 + 1 == 2218217001 (mod 10^10),
2218217001^3 + 1 == 6921651002 (mod 10^10),
6921651002^3 + 1 == 8865812009 (mod 10^10),
8865812009^3 + 1 == 4680316730 (mod 10^10).
CROSSREFS
Cf. this sequence (a), A318353 (b), A318373 (c), A318374 (d).
Another automorphic cube-ring of four 10-adic integers: A317698, A318299, A318300, A318302.
Sequence in context: A218363 A200611 A016666 * A301814 A065281 A256848
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 24 2018
STATUS
approved