%I #4 Aug 24 2018 11:09:58
%S 5,7,13,14,29,55,106,220,432,885,1788,3642,7416,15082,30713,62570,
%T 127441,259671,529160,1078183,2197318,4477498,9124533,18594318,
%U 37892248,77219600,157363288,320686910,653519695,1331791431,2714024976,5530847648
%N Number of nX4 0..1 arrays with every element unequal to 0, 1, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
%C Column 4 of A318350.
%H R. H. Hardin, <a href="/A318346/b318346.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +2*a(n-3) +2*a(n-4) +5*a(n-5) +4*a(n-7) +3*a(n-8) +a(n-9) -9*a(n-10) -11*a(n-11) -41*a(n-12) -29*a(n-13) -52*a(n-14) +4*a(n-15) +7*a(n-16) +37*a(n-17) +13*a(n-18) +28*a(n-19) +32*a(n-20) -4*a(n-21) +39*a(n-22) +8*a(n-23) +6*a(n-24) +37*a(n-25) -23*a(n-26) -3*a(n-27) -20*a(n-28) -24*a(n-29) -12*a(n-30) -8*a(n-31) -4*a(n-32) +4*a(n-33) +8*a(n-35) -4*a(n-36) +4*a(n-37) for n>45
%e Some solutions for n=5
%e ..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
%e ..0..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..1..0. .0..0..0..0
%e ..0..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..1..0
%e ..0..0..0..0. .0..0..0..0. .0..1..0..0. .0..1..1..0. .0..0..0..0
%e ..0..0..0..0. .1..0..0..0. .0..0..0..0. .1..1..1..1. .0..0..0..0
%Y Cf. A318350.
%K nonn
%O 1,1
%A _R. H. Hardin_, Aug 24 2018