OFFSET
2,1
COMMENTS
For prime p and m > 0, a(p^m) = p^(m+1). - Muniru A Asiru, Nov 23 2018
LINKS
David A. Corneth, Table of n, a(n) for n = 2..10001 (first 499 terms by Muniru A Asiru)
FORMULA
a(n) = ceiling(n^(1 + 1/(tau(n)-1))). - Jon E. Schoenfield, Nov 22 2018
EXAMPLE
As tau(4) = 3, we look for the least k such that k^(3-1) >= 4^3, for which we find k = 8. Therefore, a(4) = 8.
MATHEMATICA
Array[Block[{k = 1}, While[k^(#2 - 1) < #1^#2, k++] & @@ {#, DivisorSigma[0, #]}; k] &, 55, 2] (* Michael De Vlieger, Oct 10 2018 *)
PROG
(PARI) a(n) = my(nd = numdiv(n)); res = ceil(n ^ (nd / (nd - 1))); while(res^(nd-1) >= n^nd, res--); res+1
(GAP) List(List([2..57], n->Filtered([2..3000], k->k^(Tau(n)-1) >= n^Tau(n))), i->i[1]); # Muniru A Asiru, Oct 09 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David A. Corneth, Oct 09 2018
EXTENSIONS
Correct value a(27) = 81 inserted by Muniru A Asiru, Nov 22 2018
STATUS
approved