This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318274 Triangle read by rows: T(n,k) = n for 0 < k < n and T(n,0) = T(n,n) = 1. 3
 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 5, 5, 5, 1, 1, 6, 6, 6, 6, 6, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 8, 8, 8, 8, 8, 8, 8, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 12 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS T(n,k) is the number of binary bitonic words of length n having k letters 1. Draw a circular rosette such that all the circles contain the rosette's center. Then T(n,k) is also the number of regions in the plane located inside k circles. In fact, a region can be encoded by a binary bitonic word as follows: label each circle from 1 to n in clockwise or counterclockwise order, then write a length n binary word such that the i-th letter indicates whether the concerned region does (write 1) or does not (write 0) lie inside the i-th circle. Row n is a partition of A014206(n-1) for n > 0. LINKS N. Alon, H. Last, R. Pinchasi and M. Sharir, On the complexity of arrangements of circles in the plane, Discrete Comput. Geom. Vol. 26 (2001), 465-492. K. E. Batcher, Sorting networks and their applications, Proceed. AFIPS Spring Joint Comput. Conf. 32 (1968), 307-314. W. Denton, Intersecting circles. H. W. Lang, Bitonic sequences. F. Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017. P. Rosin, Rosettes and other arrangements of circles, Nexus Network Journal Vol. 3 (2001), 113-126. Eric Weisstein's World of Mathematics, Plane Division by Circles. Franck Maminirina Ramaharo, Illustration of initial terms FORMULA The n-th row are the coefficients in the expansion of 1 + x^n + n*x*(1 - x^(n - 1))/(1 - x), n > 0. G.f. for column k > 0: (((1 - k)*x^2 - (1 - k)*x + 1)*x^k)/(x - 1)^2. T(n+1,n-k) - n + k = A128227(n,k). EXAMPLE Triangle begins: n\k| 0  1  2  3  4  5  6  7  8 ---+-------------------------- 0  | 1 1  | 1  1 2  | 1  2  1 3  | 1  3  3  1 4  | 1  4  4  4  1 5  | 1  5  5  5  5  1 6  | 1  6  6  6  6  6  1 7  | 1  7  7  7  7  7  7  1 8  | 1  8  8  8  8  8  8  8  1 ... For n = 5, the binary bitonic words are (k = 0) 00000; (k = 1) 10000, 01000, 00100, 00010, 00001; (k = 2) 11000, 01100, 00110, 00011, 10001; (k = 3) 11100, 01110, 00111, 10011, 11001; (k = 4) 11110, 01111, 10111, 11011, 11101; (k = 5) 11111. MATHEMATICA Table[If[k == n || k == 0, 1, n], {n, 0, 20}, {k, 0, n}] // Flatten PROG (Maxima) T(n, k) := if k = 0 or k = n then 1 else if k < n then n else 0\$ for n:0 thru 10 do print(makelist(T(n, k), k, 0, n)); (PARI) T(n, k) = if ((k==0) || (k==n), 1, n); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 25 2018 CROSSREFS Row sums: A014206 preceded by 1. Cf. A007318, A128227. Sequence in context: A192650 A178059 A116188 * A049695 A096589 A176427 Adjacent sequences:  A318271 A318272 A318273 * A318275 A318276 A318277 KEYWORD nonn,easy,tabl AUTHOR Franck Maminirina Ramaharo, Aug 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 04:39 EDT 2019. Contains 327187 sequences. (Running on oeis4.)