login
A318257
Triangle read by rows, expansion of the e.g.f. given below related to partitions of {1,2,...,5n} into sets of size 5, nonzero coefficients of z.
0
1, 0, 1, 0, 1, 126, 0, 1, 3003, 126126, 0, 1, 107882, 23279256, 488864376, 0, 1, 3321890, 5319906900, 412275623760, 5194672859376, 0, 1, 107746281, 1394769716340, 369277150181940, 14687937509885640, 123378675083039376
OFFSET
0,6
EXAMPLE
[0] [1]
[1] [0, 1]
[2] [0, 1, 126]
[3] [0, 1, 3003, 126126]
[4] [0, 1, 107882, 23279256, 488864376]
[5] [0, 1, 3321890, 5319906900, 412275623760, 5194672859376]
MAPLE
CL := p -> PolynomialTools:-CoefficientList(p, x):
FL := p -> ListTools:-Flatten(p):
f := z -> (1/5)*(exp(z)+2*(+exp(1/4*z*(5^(1/2)-1))*cos(1/4*z*2^(1/2)*
(5+5^(1/2))^(1/2))+exp(-1/4*z*(5^(1/2)+1))*cos(1/4*z*2^(1/2)*(5-5^(1/2))^(1/2)))):
gf := exp(x*(f(z)-1)): ser := series(gf, z, 48):
FL([seq(CL(sort(expand((5*n)!*coeff(ser, z, n*5)), [x], ascending)), n=0..7)]);
CROSSREFS
Cf. A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4), this seq (m=5).
Sequence in context: A048563 A239060 A365898 * A110825 A365897 A050451
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 22 2018
STATUS
approved