login
A318256
a(n) = (denominator of B(n,x)) / (the squarefree kernel of n+1), where B(n,x) is the n-th Bernoulli polynomial.
6
1, 1, 2, 1, 6, 1, 6, 3, 10, 1, 6, 1, 210, 15, 2, 3, 30, 5, 210, 21, 110, 15, 30, 5, 546, 21, 14, 1, 30, 1, 462, 231, 1190, 105, 6, 1, 51870, 1365, 70, 21, 2310, 55, 2310, 105, 322, 105, 210, 35, 6630, 663, 286, 33, 330, 55, 798, 57, 290, 15, 30, 1, 930930, 15015
OFFSET
0,3
LINKS
András Bazsó and István Mező, On the coefficients of power sums of arithmetic progressions, J. Number Th., 153 (2015), 117-123.
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, 9 pp.; arXiv:2310.01325 [math.NT], 2023.
FORMULA
Let Q(n) = {p <= floor((n + 2)/(2 + n mod 2)) and p is prime and p does not divide n + 1 and the sum of the digits in base p of n+1 is at least p} then a(n) = Product_{p in Q(n)} p. (See the Kellner & Sondow links.)
a(n) = denominator(Bernoulli'(n+1, x)), where ' denotes d/dx. - Peter Luschny, Oct 15 2023
EXAMPLE
a(59) = 1 because there exist no number which satisfies the definition (and the product of an empty set is 1).
a(60) = 930930 because {2, 3, 5, 7, 11, 13, 31} are the only primes which satisfy the definition.
The denominator of the Bernoulli polynomial B_n(x) equals the squarefree kernel of n+1 if n is in {0, 1, 3, 5, 9, 11, 27, 29, 35, 59}. These might be the only numbers with this property.
MAPLE
a := n -> denom(bernoulli(n, x)) / mul(p, p in numtheory:-factorset(n+1)):
seq(a(n), n=0..61);
MATHEMATICA
sfk[n_] := Times @@ FactorInteger[n][[All, 1]];
a[n_] := (BernoulliB[n, x] // Together // Denominator)/sfk[n+1];
Table[a[n], {n, 0, 61}] (* Jean-François Alcover, Feb 14 2019 *)
PROG
(Sage)
def A318256(n): return mul([p for p in (2..(n+2)//(2+n%2))
if is_prime(p)
and not p.divides(n+1)
and sum((n+1).digits(base=p)) >= p])
print([A318256(n) for n in (0..61)])
CROSSREFS
a(n) = A144845(n) / A007947(n+1).
Cf. A324370 (same sequence with offset 1).
Sequence in context: A366570 A286515 A166120 * A324370 A324193 A364829
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 12 2018
STATUS
approved