OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..459
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
a(n) = Sum_{k=0..n} (-5)^(n-k)*Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-5)^(k-1)*binomial(n-1,k-1)*a(n-k).
a(n) = (-5)^n*BellPolynomial_n(-1/5). - Peter Luschny, Aug 20 2018
MAPLE
seq((-5)^n*BellB(n, -1/5), n=0..30); # Robert Israel, Nov 11 2020
MATHEMATICA
nmax = 21; CoefficientList[Series[Exp[(1 - Exp[-5 x])/5], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-5)^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 0, 21}]
a[n_] := a[n] = Sum[(-5)^(k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
Table[(-5)^n BellB[n, -1/5], {n, 0, 21}] (* Peter Luschny, Aug 20 2018 *)
PROG
(PARI) my(x = 'x + O('x^25)); Vec(serlaplace(exp((1 - exp(-5*x))/5))) \\ Michel Marcus, Nov 11 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 20 2018
STATUS
approved