login
Decimal expansion of the asymptotic density of deficient numbers.
6

%I #31 Aug 29 2021 19:08:18

%S 7,5,2,3,8,0

%N Decimal expansion of the asymptotic density of deficient numbers.

%C A number n is abundant if sigma(n) > 2n, perfect if sigma(n) = 2n, deficient if sigma(n) < 2n, where sigma(n) is the sum of the divisors of n. Since the asymptotic density of the perfect numbers is 0, the asymptotic density of the deficient numbers (0.752380...) + the asymptotic density of the abundant numbers (0.247619...) is 1. - _Muniru A Asiru_, Oct 13 2018

%H P. G. Banda, <a href="http://hdl.handle.net/10211.3/157293">The Schnirelmann density of the set of deficient numbers</a>, Thesis 2015.

%F Equals 1 - A302991.

%e 0.752380...

%Y Cf. A005100, A302991, A303736.

%K nonn,cons,more

%O 0,1

%A _Muniru A Asiru_, Aug 20 2018