The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318158 Prime numbers of the form p1^4 + p2^3 + p3^2 + p4, where p1, p2, p3 and p4 are distinct primes. 1
 79, 97, 103, 109, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Does this sequence contain every prime > 113? - Robert Israel, Aug 26 2018 From David A. Corneth, Aug 26 2018: (Start) As the primes in the sum are distinct and has four terms, exactly one of (p1, p2, p3, p4) is 2. Contains all the primes in [120, 5 * 10^7]. (End) LINKS Robert Israel, Table of n, a(n) for n = 1..10000 David A. Corneth, Statistic for computations using the PARI program below David A. Corneth, PARI program EXAMPLE 227 belongs to this sequence as 227 = 3^4 + 5^3 + 2^2 + 17, with 2, 3, 5 and 17 all primes. MAPLE N:= 1000: # to get all terms <= N V:= Vector(N): p1:= 1: do   p1:= nextprime(p1);   if p1^4 > N then break fi;   p2:= 1:   do     p2:= nextprime(p2);     if p1^4 + p2^3 > N then break fi;     if p2 = p1 then next fi;     p3:= 1;     do       p3:= nextprime(p3);       if p1^4 + p2^3 + p3^2 > N then break fi;       if p3 = p1 or p3 = p2 then next fi;       if min(p1, p2, p3)>2 then          p4:= 2;          x:= p1^4+p2^3+p3^2+p4;          if isprime(x) then V[x]:= 1 fi;       else          p4:= 2;          do             p4:= nextprime(p4);             if p1^4 + p2^3 + p3^2 + p4 > N then break fi;             if p4 = p1 or p4 = p2 or p4 = p3 then next fi;             x:= p1^4+p2^3+p3^2+p4;             if isprime(x) then V[x]:= 1 fi;           od        fi od od od: select(t -> V[t]=1, [\$1..N]); # Robert Israel, Aug 26 2018 MATHEMATICA v[t_] := Prime@Range@PrimePi@t; up = 400; Union@Reap[ Do[ If[PrimeQ[p = p1^4 + p2^3 + p3^2 + p4] && (s = {p1, p2, p3, p4}; Sort@s == Union@s), Sow@p], {p1, v[ up^(1/4)]}, {p2, v@Sqrt[up - p1^4]}, {p3, v[up - p1^4 - p2^3]}, {p4, v[up - p1^4 - p2^3 - p3^2]}]][[2, 1]] (* Giovanni Resta, Aug 19 2018 *) PROG (Minizinc) include "globals.mzn"; int: n = 4; %to get all primes less than 250 of this sequence int: max_val = 250; array[1..n+1] of var 2..max_val: x; % primes between 2..max_valset of int: prime = 2..max_val diff { i | i in 2..max_val, j in 2..ceil(sqrt(i)) where i mod j = 0} ; set of int: primes; primes = prime union {2}; solve satisfy; constraint all_different(x) /\ x[1] in primes /\ x[2] in primes /\ x[3] in primes /\ x[4] in primes /\ x[5] in primes /\ pow(x[4], 4)+pow(x[3], 3)+pow(x[2], 2)+pow(x[1], 1)= x[5] ; output [ show(x[5])] CROSSREFS Cf. A316971. Sequence in context: A235227 A039544 A091819 * A117244 A039436 A043259 Adjacent sequences:  A318155 A318156 A318157 * A318159 A318160 A318161 KEYWORD nonn AUTHOR Pierandrea Formusa, Aug 19 2018 EXTENSIONS More terms from Giovanni Resta, Aug 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 03:42 EDT 2020. Contains 337264 sequences. (Running on oeis4.)