login
The 10-adic integer d = ...8122152026 satisfying d^2 + 1 = e, e^2 + 1 = f, f^2 + 1 = a, a^2 + 1 = b, b^2 + 1 = c, and c^2 + 1 = d.
8

%I #18 Aug 24 2018 09:27:02

%S 6,2,0,2,5,1,2,2,1,8,9,3,5,5,6,9,0,6,9,2,6,5,2,5,9,5,3,0,5,9,4,7,3,6,

%T 3,2,3,0,9,6,4,0,8,7,9,2,8,9,1,3,7,0,3,3,8,0,8,9,5,7,7,0,2,3,4,4,3,1,

%U 7,9,9,4,7,6,6,7,9,2,9,8,1,8,3,7,1,9,8,8,2,6,2,3,7,2,5,7,6,0,3,8,9,5,8,4,7,1,0,4,4,9,0,4,7,8,9,5,6,1,4,3,0,4,0,9,9,9,8,2,0,1,8,0,8,9,0,8,7,9,7,1,7,5,5,5,0,1,0,0,7,0

%N The 10-adic integer d = ...8122152026 satisfying d^2 + 1 = e, e^2 + 1 = f, f^2 + 1 = a, a^2 + 1 = b, b^2 + 1 = c, and c^2 + 1 = d.

%C Data generated using MATLAB.

%H Seiichi Manyama, <a href="/A318138/b318138.txt">Table of n, a(n) for n = 0..1000</a>

%e 26^2 + 1 == 677 (mod 10^3), 677^2 + 1 == 330 (mod 10^3), 330^2 + 1 == 901 (mod 10^3), 901^2 + 1 == 802 (mod 10^3), 802^2 + 1 == 205 (mod 10^3), and 205^2 + 1 == 26 (mod 10^3), so 6 2 0 comprise the sequence's first three terms.

%Y Cf. A018247, A318135 (a), A318136 (b), A318137 (c), A318139 (e), A318140 (f)

%K nonn,base

%O 0,1

%A _Patrick A. Thomas_, Aug 19 2018