login
The 10-adic integer c = ...9977271205 satisfying c^2 + 1 = d, d^2 + 1 = e, e^2 + 1 = f, f^2 + 1 = a, a^2 + 1 = b, and b^2 + 1 = c.
8

%I #18 Aug 24 2018 09:27:11

%S 5,0,2,1,7,2,7,7,9,9,7,6,0,3,8,2,5,5,8,3,2,0,3,2,0,7,7,2,5,7,7,8,0,0,

%T 5,5,9,7,9,2,4,8,2,6,9,2,9,2,7,5,4,5,6,2,1,1,5,4,4,2,5,0,7,3,6,4,4,7,

%U 0,1,7,3,6,5,0,4,7,6,6,7,3,0,4,3,3,7,6,2,6,1,5,6,4,9,5,4,5,2,8,7,5,2,2,6,9,1,5,6,1,4,5,3,0,6,7,9,4,5,1,0,7,6,8,4,9,4,6,6,5,1,1,4,5,0,9,8,8,4,7,9,7,1,0,2,8,6,6,6,9,9

%N The 10-adic integer c = ...9977271205 satisfying c^2 + 1 = d, d^2 + 1 = e, e^2 + 1 = f, f^2 + 1 = a, a^2 + 1 = b, and b^2 + 1 = c.

%C Data generated using MATLAB.

%H Seiichi Manyama, <a href="/A318137/b318137.txt">Table of n, a(n) for n = 0..1000</a>

%e 205^2 + 1 == 26 (mod 10^3), 26^2 + 1 == 677 (mod 10^3), 677^2 + 1 == 330 (mod 10^3), 330^2 + 1 == 901 (mod 10^3), 901^2 + 1 == 802 (mod 10^3), and 802^2 + 1 == 205 (mod 10^3), so 5 0 2 comprise the sequence's first three terms.

%Y Cf. A018247, A318135 (a), A318136 (b), A318138 (d), A318139 (e), A318140 (f).

%K nonn,base

%O 0,1

%A _Patrick A. Thomas_, Aug 19 2018