login
The 10-adic integer b = ...9989107802 satisfying b^2 + 1 = c, c^2 + 1 = d, d^2 + 1 = e, e^2 + 1 = f, f^2 + 1 = a, and a^2 + 1 = b.
8

%I #17 Aug 24 2018 09:27:19

%S 2,0,8,7,0,1,9,8,9,9,0,0,9,3,5,0,4,1,4,2,3,4,1,3,0,0,7,6,9,0,4,3,7,4,

%T 5,3,7,9,8,6,4,7,6,3,0,6,8,4,0,6,3,9,2,2,9,2,2,2,8,2,8,4,9,5,1,8,3,8,

%U 4,3,6,6,1,3,6,2,2,3,8,4,5,7,3,5,4,7,8,9,2,8,0,3,0,4,1,1,3,8,0,7,9,8,5,3,0,3,5,0,1,6,0,8,8,2,2,2,2,7,6,4,1,3,0,7,8,9,1,9,8,1,2,8,7,3,9,1,0,1,5,1,4,9,4,3,3,0,8,6,4,2

%N The 10-adic integer b = ...9989107802 satisfying b^2 + 1 = c, c^2 + 1 = d, d^2 + 1 = e, e^2 + 1 = f, f^2 + 1 = a, and a^2 + 1 = b.

%C Data generated using MATLAB.

%H Seiichi Manyama, <a href="/A318136/b318136.txt">Table of n, a(n) for n = 0..1000</a>

%e 802^2 + 1 = 205 (mod 10^3), 205^2 + 1 = 26 (mod 10^3), 26^2 + 1 = 677 (mod 10^3), 677^2 + 1 = 330 (mod 10^3), 330^2 + 1 = 901 (mod 10^3), and 901^2 + 1 = 802 (mod 10^3), so 2 0 8 comprise the sequence's first three terms.

%Y Cf. A018247, A318135 (a), A318137 (c), A318138 (d), A318139 (e), A318140 (f).

%K nonn,base

%O 0,1

%A _Patrick A. Thomas_, Aug 19 2018