login
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x*Product_{n>=1} (1 + x^(2*n-1))^a(n).
2

%I #5 Aug 19 2018 07:37:38

%S 1,1,0,1,1,0,0,1,1,1,2,1,1,1,0,1,2,2,2,3,3,3,4,3,5,6,5,6,7,6,6,9,8,9,

%T 11,11,13,14,14,16,20,21,23,28,29,32,35,36,42,47,48,54,64,64,69,80,85,

%U 93,105,113,124,139,145,161,181,192,211,236,252,273,302,324,356,396,421,462

%N G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x*Product_{n>=1} (1 + x^(2*n-1))^a(n).

%t a[n_] := a[n] = SeriesCoefficient[x Product[(1 + x^(2 k - 1))^a[k], {k, 1, n - 1}], {x, 0, n}]; a[1] = 1; Table[a[n], {n, 76}]

%Y Cf. A004111, A115593.

%K nonn

%O 1,11

%A _Ilya Gutkovskiy_, Aug 18 2018