login
A318125
a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^4)).
1
1, 1, 3, 14, 54, 238, 1026, 4573, 20404, 91902, 415953, 1891908, 8638846, 39569655, 181766878, 836950153, 3861927937, 17853107055, 82668539290, 383360628369, 1780126898575, 8275908734103, 38517137597486, 179442212204245, 836741558761935, 3905012142470483
OFFSET
0,3
COMMENTS
For n > 2, a(n) is the n-th term of the weigh transform of n-gonal pyramidal numbers.
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = 4.761510955746025663058811... and c = 0.2241869836397882024713... - Vaclav Kotesovec, Aug 19 2018
MATHEMATICA
Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^4), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 18 2018
STATUS
approved