The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318119 Constant term in the expansion of (Sum_{k=0..n} k*(x^k + x^(-k)))^5. 1
 0, 0, 560, 14240, 146680, 922680, 4226040, 15492680, 48144680, 131678360, 325322360, 739761880, 1570082800, 3143824320, 5988841040, 10926565040, 19197225520, 32624627920, 53829216160, 86499340720, 135731931720, 208455129960, 313946860040, 464464838200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1). FORMULA a(n) = (n-1) * n * (n+1) * (2*n+1) * (967*n^5+3868*n^4+6005*n^3+5444*n^2+2844*n+1008) / 9072. MATHEMATICA a[n_] := Coefficient[Expand[Sum[k * (x^k + x^(-k)), {k, 0, n}]^5], x, 0]; Array[a, 30, 0] (* Amiram Eldar, Dec 16 2018 *) PROG (PARI) {a(n) = polcoeff((sum(k=0, n, k*(x^k+x^(-k))))^5, 0, x)} (PARI) {a(n) = (n-1)*n*(n+1)*(2*n+1)*(967*n^5+3868*n^4+6005*n^3+5444*n^2+2844*n+1008)/9072} (GAP) List([0..25], n->(n-1)*n*(n+1)*(2*n+1)*(967*n^5+3868*n^4+6005*n^3+5444*n^2+2844*n+1008)/9072); # Muniru A Asiru, Dec 16 2018 CROSSREFS Column 5 of A322549. Cf. A083669. Sequence in context: A069243 A169719 A104591 * A196568 A171347 A193171 Adjacent sequences:  A318116 A318117 A318118 * A318120 A318121 A318122 KEYWORD nonn,easy AUTHOR Seiichi Manyama, Dec 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 12:21 EST 2020. Contains 338923 sequences. (Running on oeis4.)