%I #4 Aug 13 2018 14:21:56
%S 3,6,9,25,58,152,368,904,2211,5420,13257,32485,79687,195459,479166,
%T 1174486,2879048,7057869,17302114,42416167,103983959,254916060,
%U 624918591,1531968302,3755586548,9206752113,22570177681,55330344496,135641228111
%N Number of nX3 0..1 arrays with every element unequal to 0, 1, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
%C Column 3 of A318037.
%H R. H. Hardin, <a href="/A318032/b318032.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) -9*a(n-2) +7*a(n-3) +6*a(n-4) -27*a(n-5) +37*a(n-6) -22*a(n-7) -23*a(n-8) +31*a(n-9) +9*a(n-10) -29*a(n-11) +48*a(n-12) -27*a(n-13) +25*a(n-14) -8*a(n-15) -24*a(n-16) +28*a(n-17) -60*a(n-18) +60*a(n-19) -63*a(n-20) +49*a(n-21) -39*a(n-22) +25*a(n-23) -13*a(n-24) +4*a(n-25) +2*a(n-26) -3*a(n-27) +4*a(n-28) -a(n-29) +a(n-30) for n>33
%e Some solutions for n=5
%e ..0..0..0. .0..0..0. .0..1..1. .0..0..0. .0..1..0. .0..0..0. .0..0..0
%e ..0..0..1. .1..0..1. .0..0..1. .0..0..0. .0..1..1. .0..0..0. .1..0..0
%e ..0..0..0. .0..1..0. .0..0..0. .1..0..0. .1..0..0. .0..0..0. .0..0..0
%e ..0..0..0. .1..0..1. .0..0..0. .0..0..1. .0..1..1. .0..0..1. .0..0..0
%e ..0..1..0. .0..0..0. .0..1..0. .0..0..0. .1..1..1. .0..0..0. .1..0..0
%Y Cf. A318037.
%K nonn
%O 1,1
%A _R. H. Hardin_, Aug 13 2018