login
A317993
Number of k such that (Z/kZ)* is isomorphic to (Z/nZ)*, where (Z/nZ)* is the multiplicative group of integers modulo n.
4
2, 2, 3, 3, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 4, 4, 2, 4, 4, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 1, 3, 2, 7, 4, 2, 4, 7, 3, 2, 4, 4, 3, 7, 2, 2, 3, 4, 2, 4, 7, 2, 4, 5, 3, 4, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 4, 3, 7, 2, 3, 2, 2, 5, 4, 7, 7, 2, 1, 2, 2, 2, 3, 2, 4, 3
OFFSET
1,1
COMMENTS
To find solutions for k to (Z/kZ)* = (Z/nZ)*, it's sufficient to check for A015126(n) <= k <= A028476(n).
It seems that this sequence is unbounded. For example, there are 59 solutions to (Z/nZ)* = C_2 X C_6 X C_1260.
Conjecture: Every number occurs in this sequence.
EXAMPLE
The solutions to (Z/kZ)* = C_6 are k = 7, 9, 14 and 18, so a(7) = a(9) = a(14) = a(18) = 4.
The solutions to (Z/kZ)* = C_2 X C_20 are k = 55, 75, 100, 110 and 150, so a(55) = a(75) = a(100) = a(110) = a(150) = 5.
The solutions to (Z/kZ)* = C_2 X C_12 are k = 35, 39, 45, 52, 70, 78 and 90, so a(35) = a(39) = a(45) = a(52) = a(70) = a(78) = a(90) = 7.
PROG
(PARI) a(n) = if(abs(n)==1||abs(n)==2, 2, my(i=0, search_max = A057635(eulerphi(n))); for(j=eulerphi(n)+1, search_max, if(znstar(j)[2]==znstar(n)[2], i++)); i) \\ search_max is the largest k such that phi(k) = phi(n). See A057635 for its program
CROSSREFS
Earliest occurrence of m is A303712(m).
Sequence in context: A179751 A373888 A039645 * A048687 A308621 A308623
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 03 2018
STATUS
approved