login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317991 2-rank of the class group of real quadratic field with discriminant A003658(n), n >= 2. 2
0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 0, 1, 2, 2, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,18

COMMENTS

The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the narrow class group of Q[sqrt(k)] or the form class group of indefinite binary quadratic forms with discriminant k, and #{x belongs to G : x^p = 1} is the number of genera of Q[sqrt(k)] (cf. A317989).

This is the analog of A319659 for real quadratic fields.

LINKS

Table of n, a(n) for n=2..88.

Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.

FORMULA

a(n) = omega(A003658(n)) - 1 = log_2(A317989(n)), where omega(k) is the number of distinct prime divisors of k.

MATHEMATICA

PrimeNu[Select[Range[2, 300], NumberFieldDiscriminant[Sqrt[#]] == #&]] - 1 (* Jean-Fran├žois Alcover, Jul 25 2019 *)

PROG

(PARI) for(n=2, 1000, if(isfundamental(n), print1(omega(n) - 1, ", ")))

CROSSREFS

Cf. A003658, A087048, A317989, A317992, A319659.

Sequence in context: A113706 A279952 A054845 * A236853 A117163 A096863

Adjacent sequences:  A317988 A317989 A317990 * A317992 A317993 A317994

KEYWORD

nonn

AUTHOR

Jianing Song, Oct 03 2018

EXTENSIONS

Offset corrected by Jianing Song, Mar 31 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 14:45 EDT 2019. Contains 328301 sequences. (Running on oeis4.)