login
A317925
Numerators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).
7
1, 1, 1, 7, 2, 1, 3, 25, 5, 1, 5, 7, 6, 3, 2, 363, 8, 5, 9, 7, 3, 5, 11, 25, 8, 3, 13, 21, 14, 1, 15, 1335, 5, 4, 6, 35, 18, 9, 6, 25, 20, 3, 21, 35, 5, 11, 23, 363, 33, 4, 8, 21, 26, 13, 10, 75, 9, 7, 29, 7, 30, 15, 15, 9923, 12, 5, 33, 7, 11, 3, 35, 125, 36, 9, 8, 63, 15, 3, 39, 363, 139, 10, 41, 21, 16, 21, 14, 125, 44, 5, 18, 77, 15, 23
OFFSET
1,4
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Numerator @ Array[f, 100] (* Amiram Eldar, Dec 12 2022 *)
PROG
(PARI)
A317925perA317926(n) = if(1==n, n, (eulerphi(n)-sumdiv(n, d, if((d>1)&&(d<n), A317925perA317926(d)*A317925perA317926(n/d), 0)))/2);
A317925(n) = numerator(A317925perA317926(n));
(PARI)
\\ Memoized implementation:
memo = Map();
A317925perA317926(n) = if(1==n, n, if(mapisdefined(memo, n), mapget(memo, n), my(v = (eulerphi(n)-sumdiv(n, d, if((d>1)&&(d<n), A317925perA317926(d)*A317925perA317926(n/d), 0)))/2); mapput(memo, n, v); (v)));
CROSSREFS
Cf. A000010, A317926 (denominators).
Cf. also A046643, A317831.
Sequence in context: A220862 A198229 A133362 * A010140 A222067 A154020
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Aug 11 2018
STATUS
approved