The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317848 Multiplicative with a(p^e) = binomial(2*e, e). 3
 1, 2, 2, 6, 2, 4, 2, 20, 6, 4, 2, 12, 2, 4, 4, 70, 2, 12, 2, 12, 4, 4, 2, 40, 6, 4, 20, 12, 2, 8, 2, 252, 4, 4, 4, 36, 2, 4, 4, 40, 2, 8, 2, 12, 12, 4, 2, 140, 6, 12, 4, 12, 2, 40, 4, 40, 4, 4, 2, 24, 2, 4, 12, 924, 4, 8, 2, 12, 4, 8, 2, 120, 2, 4, 12, 12, 4, 8, 2, 140 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The Dirichlet convolution square of this sequence is A165825. LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA A037445(n) = A006519(a(n)). A046643(n) = numerator(a(n)/A165825(n)) = A000265(a(n)). A046644(n) = denominator(a(n)/A165825(n)) = A165825(n)/A037445(n). A299149(n) = numerator(n*a(n)/A165825(n)) = A000265(n*a(n)). A299150(n) = denominator(n*a(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). PROG (PARI) a(n)={my(v=factor(n)[, 2]); prod(i=1, #v, binomial(2*v[i], v[i]))} (PARI) \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u). DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d binomial(e+e, e), factor(n)[, 2])); \\ Antti Karttunen, Sep 17 2018 CROSSREFS Cf. A000265, A000984, A006519, A037445, A046643, A046644, A165825, A299149, A299150. Sequence in context: A265392 A253139 A318519 * A124859 A021446 A062401 Adjacent sequences:  A317845 A317846 A317847 * A317849 A317850 A317851 KEYWORD nonn,mult AUTHOR Andrew Howroyd, Aug 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 10:49 EDT 2020. Contains 336198 sequences. (Running on oeis4.)