login
A317847
Numerators of sequence whose Dirichlet convolution with itself yields A303757, the ordinal transform of function a(1) = 0; a(n) = phi(n) for n > 1, where phi is Euler's totient function (A000010).
3
1, 1, 1, 7, 1, 5, 1, 9, 7, 5, 1, 15, 1, 5, 1, 43, 1, 15, 1, 7, 3, 3, 1, 5, 3, 5, 9, 15, 1, 9, 1, 87, 3, 5, 1, 1, 1, 5, 3, 13, 1, 11, 1, 11, 15, 3, 1, 187, 7, 19, 1, 15, 1, 5, 3, 21, 3, 3, 1, -1, 1, 3, 11, 387, 1, 9, 1, 7, 1, 13, 1, 119, 1, 7, 19, 23, 3, 19, 1, 139, -21, 7, 1, 21, 1, 5, 1, 39, 1, 67, 3, 3, 5, 3, 5, 451, 1, 15, 19, 69, 1, 13, 1, -27, 7
OFFSET
1,4
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A303757(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
A303757[n_] := If[n == 2, 1, Count[EulerPhi[Range[n]] - EulerPhi[n], 0]];
f[n_] := f[n] = If[n == 1, 1, (1/2)(A303757[n] -
Sum[If[1<d<n, f[d] f[n/d], 0], {d, Divisors[n]}])];
a[n_] := Numerator[f[n]];
Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v303757 = ordinal_transform(vector(up_to, n, if(1==n, 0, eulerphi(n))));
v317847 = DirSqrt(vector(up_to, n, v303757[n]));
A317847(n) = numerator(v317847[n]);
CROSSREFS
Cf. A000010, A303757, A046644 (denominators).
Sequence in context: A117182 A143301 A225459 * A181722 A317833 A021587
KEYWORD
sign
AUTHOR
Antti Karttunen, Aug 14 2018
STATUS
approved