login
A317835
Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A003415 (arithmetic derivative of n) + A063524 (1, 0, 0, 0, ...).
5
1, 1, 1, 15, 1, 9, 1, 81, 23, 13, 1, 95, 1, 17, 15, 1499, 1, 127, 1, 151, 19, 25, 1, 393, 39, 29, 193, 207, 1, 87, 1, 6311, 27, 37, 23, 969, 1, 41, 31, 661, 1, 119, 1, 319, 259, 49, 1, 5499, 55, 295, 39, 375, 1, 769, 31, 929, 43, 61, 1, 593, 1, 65, 347, 50075, 35, 183, 1, 487, 51, 183, 1, 2751, 1, 77, 371, 543, 35, 215, 1, 9643, 5611, 85, 1
OFFSET
1,4
COMMENTS
The first negative term is a(240) = -5067.
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A003415(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
A317835aux(n) = if(1==n, n, (A003415(n)-sumdiv(n, d, if((d>1)&&(d<n), A317835aux(d)*A317835aux(n/d), 0)))/2);
A317835(n) = numerator(A317835aux(n));
CROSSREFS
Cf. A003415, A063524, A046644 (denominators).
Cf. also A300251, A300252, A305809.
Sequence in context: A331019 A185903 A040237 * A225762 A375940 A040238
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Aug 12 2018
STATUS
approved