login
A317833
Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078898 (the ordinal transform of A020639, the smallest prime factor of n).
5
1, 1, 1, 7, 1, 5, 1, 25, 7, 9, 1, 31, 1, 13, 5, 363, 1, 55, 1, 55, 7, 21, 1, 101, 7, 25, 33, 79, 1, 41, 1, 1335, 11, 33, 5, 305, 1, 37, 13, 177, 1, 59, 1, 127, 47, 45, 1, 1371, 7, 175, 17, 151, 1, 309, 7, 253, 19, 57, 1, 187, 1, 61, 67, 9923, 9, 95, 1, 199, 23, 113, 1, 927, 1, 73, 87, 223, 5, 113, 1, 2379, 715, 81, 1, 265, 11
OFFSET
1,4
COMMENTS
The first negative term is a(840) = -445.
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A078898(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
MATHEMATICA
lpf[n_] := If[n == 1, 1, FactorInteger[n][[1, 1]]];
b[_] = 1;
A078898[n_] := A078898[n] = If[n == 0, 0, With[{t = lpf[n]}, b[t]++]];
f[n_] := f[n] = If[n == 1, 1, (1/2)(A078898[n] - Sum[If[1 < d < n, f[d]*f[n/d], 0], {d, Divisors[n]}])]
a[n_] := Numerator[f[n]];
Array[a, 100] (* Jean-François Alcover, Dec 19 2021 *)
PROG
(PARI)
up_to = 16384;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
v078898 = ordinal_transform(vector(up_to, n, A020639(n)));
A078898(n) = v078898[n];
A317833aux(n) = if(1==n, n, (A078898(n)-sumdiv(n, d, if((d>1)&&(d<n), A317833aux(d)*A317833aux(n/d), 0)))/2);
A317833(n) = numerator(A317833aux(n));
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Aug 10 2018
STATUS
approved